Reproducible Data Science with Python: An Open Learning Resource

Jupyter Notebook JavaScript Python Submitted 19 November 2021Published 24 October 2022
Review

Editor: @ShanEllis (all papers)
Reviewers: @TomDonoghue (all reviews), @lechten (all reviews)

Authors

Valentin Danchev (0000-0002-7563-0168)

Citation

Danchev, V., (2022). Reproducible Data Science with Python: An Open Learning Resource. Journal of Open Source Education, 5(56), 156, https://doi.org/10.21105/jose.00156

@article{Danchev2022, doi = {10.21105/jose.00156}, url = {https://doi.org/10.21105/jose.00156}, year = {2022}, publisher = {The Open Journal}, volume = {5}, number = {56}, pages = {156}, author = {Valentin Danchev}, title = {Reproducible Data Science with Python: An Open Learning Resource}, journal = {Journal of Open Source Education} }
Copy citation string · Copy BibTeX  
Tags

data science Jupyter notebook reproducible workflow open science real-world social data exploratory data analysis machine learning social networks data science ethics

Altmetrics
Markdown badge

 

License

Authors of JOSE papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2577-3569