Course Materials for an Introduction to Data-Driven Chemistry

Jupyter Notebook Python Submitted 14 January 2023Published 20 May 2023

Editor: @arm61 (all papers)
Reviewers: @lucydot (all reviews), @ghutchis (all reviews)


James Cumby (0000-0002-9499-3319), Matteo T. Degiacomi (0000-0003-4672-471X), Valentina Erastova (0000-0002-6747-3297), J. Jasmin Güven (0000-0003-1555-0075), Claire L. Hobday (0000-0003-4925-4557), Antonia S. j. s. Mey (0000-0001-7512-5252), Hannah Pollak (0000-0003-1011-8478), Rafal Szabla (0000-0002-1668-8044)


Cumby et al., (2023). Course Materials for an Introduction to Data-Driven Chemistry. Journal of Open Source Education, 6(63), 192,

@article{Cumby2023, doi = {10.21105/jose.00192}, url = {}, year = {2023}, publisher = {The Open Journal}, volume = {6}, number = {63}, pages = {192}, author = {James Cumby and Matteo Degiacomi and Valentina Erastova and J. Güven and Claire Hobday and Antonia Mey and Hannah Pollak and Rafal Szabla}, title = {Course Materials for an Introduction to Data-Driven Chemistry}, journal = {Journal of Open Source Education} }
Copy citation string · Copy BibTeX  

chemistry python undergraduate

Markdown badge



Authors of JOSE papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2577-3569